170 research outputs found

    Ramsey Properties of Permutations

    Get PDF
    The age of each countable homogeneous permutation forms a Ramsey class. Thus, there are five countably infinite Ramsey classes of permutations.Comment: 10 pages, 3 figures; v2: updated info on related work + some other minor enhancements (Dec 21, 2012

    Spanning embeddings of arrangeable graphs with sublinear bandwidth

    Full text link
    The Bandwidth Theorem of B\"ottcher, Schacht and Taraz [Mathematische Annalen 343 (1), 175-205] gives minimum degree conditions for the containment of spanning graphs H with small bandwidth and bounded maximum degree. We generalise this result to a-arrangeable graphs H with \Delta(H)<sqrt(n)/log(n), where n is the number of vertices of H. Our result implies that sufficiently large n-vertex graphs G with minimum degree at least (3/4+\gamma)n contain almost all planar graphs on n vertices as subgraphs. Using techniques developed by Allen, Brightwell and Skokan [Combinatorica, to appear] we can also apply our methods to show that almost all planar graphs H have Ramsey number at most 12|H|. We obtain corresponding results for graphs embeddable on different orientable surfaces.Comment: 20 page

    Properly coloured copies and rainbow copies of large graphs with small maximum degree

    Full text link
    Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz local lemma to show the following two results about colourings c of the edges of the complete graph K_n. If for each vertex v of K_n the colouring c assigns each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a copy of G in K_n which is properly edge-coloured by c. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2 edges of K_n, then there is a copy of G in K_n such that each edge of G receives a different colour from c. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page

    Perfect graphs of fixed density: counting and homogenous sets

    Full text link
    For c in [0,1] let P_n(c) denote the set of n-vertex perfect graphs with density c and C_n(c) the set of n-vertex graphs without induced C_5 and with density c. We show that log|P_n(c)|/binom{n}{2}=log|C_n(c)|/binom{n}{2}=h(c)+o(1) with h(c)=1/2 if 1/4<c<3/4 and h(c)=H(|2c-1|)/2 otherwise, where H is the binary entropy function. Further, we use this result to deduce that almost all graphs in C_n(c) have homogenous sets of linear size. This answers a question raised by Loebl, Reed, Scott, Thomason, and Thomass\'e [Almost all H-free graphs have the Erd\H{o}s-Hajnal property] in the case of forbidden induced C_5.Comment: 19 page

    An extension of Tur\'an's Theorem, uniqueness and stability

    Get PDF
    We determine the maximum number of edges of an nn-vertex graph GG with the property that none of its rr-cliques intersects a fixed set MV(G)M\subset V(G). For (r1)Mn(r-1)|M|\ge n, the (r1)(r-1)-partite Turan graph turns out to be the unique extremal graph. For (r1)M<n(r-1)|M|<n, there is a whole family of extremal graphs, which we describe explicitly. In addition we provide corresponding stability results.Comment: 12 pages, 1 figure; outline of the proof added and other referee's comments incorporate

    A density Corr\'adi-Hajnal Theorem

    Get PDF
    We find, for all sufficiently large nn and each kk, the maximum number of edges in an nn-vertex graph which does not contain k+1k+1 vertex-disjoint triangles. This extends a result of Moon [Canad. J. Math. 20 (1968), 96-102] which is in turn an extension of Mantel's Theorem. Our result can also be viewed as a density version of the Corradi-Hajnal Theorem.Comment: 41 pages (including 11 pages of appendix), 4 figures, 2 table
    corecore